Associations Between Prenatal Depressive Symptoms, Infant Temperament and the Maternal Gut Microbiome

Stuti Patel, Marcel van de Wouw, Lianne Tomfohr-Madsen, Catherine Lebel, Marie-Claire Arrieta & Gerald Giesbrecht University of Calgary

Background

- Approximately 17-25% of all pregnant individuals experience prenatal depression¹. This illness increases the risk of negative obstetric outcomes such as low birthweight and hampers child development their infants².
- The gut microbiome is linked to both depressive symptoms³ and temperament⁴.
- This research aimed at understanding if gut microbial bacteria are associated with infants' temperament and the occurrence of prenatal depression.

Methods

- Data for this project was obtained from the *Pregnancy During the Pandemic* cohort⁵. Participants (n=249), were less than 35 weeks pregnant, lived in Canada, were able to read and write in English/French and were 17 years of age or older.
- Participants were excluded if they were using alcohol, illicit drugs, or antibiotics, if they had a clinical diagnosis of depression and if they had any symptoms of a COVID-19 infection.
- Stool samples were collected using an at-home collection kit (DNAGenotek, OM-200). Samples were analyzed using shotgun metagenomics sequencing.
- The Edinburgh Postpartum Depression Scale (EPDS) was used to gauge pregnant individuals' depressive symptoms⁶ at recruitment and the Infant Behaviour Questionnaire- Revised (very short form) (IBQ-R VSF)⁷ was used to assess infant temperament at 6 months of age.
- Spearman correlations were conducted to associate gut microbial abundance to EPDS scores.

CATEGORIES	FREQUENC	Y PERCENT	
EDUCATIO	N		
Less than high school diploma	1	0.4	
Completed high school	12	4.8	
Completed trade, technical, vocational			
school or business/community college	28	11.2	
Bachelor's Degree	105	42.2	
Master's Degree	66	26.5	
Doctorate (PhD)	13	5.2	
Professional (MD, JD, DDS, ETC)	24	9.6	
ETHNICITY			
Caucasian	216	86.7	
First Nations	3	1.2	
Metis	2	0.8	
Inuit	0	0	
Black	2	0.8	
Chinese	4	1.6	
Filipino	3	1.2	
West Asian(e.g., Afghan, Iranian)	4	1.6	
South Asian(e.g., East Indian, Pakistani) 2	0.8	
Southeast Asian (e.g., Cambodian)	3	1.2	
Hispanic/Latinx	10	4	
INCOME			
Less than \$20, 000	6	2.4	
\$20,000- \$39,999	6	2.4	
\$40,000-\$69,999	15	6	
\$70,000-\$99,999	38	15.3	
\$100,000 -\$124,999	59	23.7	
\$125,000- \$149,999	39	15.7	
\$150,000 - \$174,999	41	16.5	
\$175,000- \$199,999	13	5.2	
\$200,000+	32	12.9	
CATEGORY MEAN (S.D.) RANGE			
Maternal age	32,70 (3,90)	0 00-47 00	

Infants' gest

Table 1. Sociodemographic characteristics of participants

ational age at birth	39.12 (1.43)	34.00-42.00

Results

Correlations with prenatal depression

Correlations with infant temperament

Compositional Associations

The following factors of infant temperament were associated with bacterial abundance-

- equolifaciens, Prevotella copri,
- Orienting/Regulation with Rothia

Thiamin fo pyrithiamine an
Pan coenzyme A b
F :
Figure 2
Associations Det
microbiota
Conclusions
These findings sug
regulation. This op
socio-cognitive dev
с. А., генан, А. Ј., Siskind, D. J., Whiteford, H. A., & , D. B., Yadon, C. A., & Tregellas, H. C. (2012, 2012/0

Harris, M. G. (2017, Sep). A systematic review and meta-regression of the prevalence and incidence of perinatal depression. Journal of affective disorders, 219, 86-92. https://doi.org/10.1016/j.jad.2017.05.003 1. Woo 2. Dava /01). Untreated prenatal maternal depression and the potential risks to offspring: a review. Archives of Women's Mental Health, 15(1), 1-14. https://doi.org/10.1007/s00737-011-0251-1 , Hasoon, J. et al. Current Perspectives on Gut Microbiome Dysbiosis and Depression. Adv Ther 37, 1328–1346 (2020). https://doi.org/10.1007/s12325-020 ., Mandhane, P. J., Scott, J. A., & Kozyrskyj, A. L. (2021). Prenatal Depression, Breastfeeding, and Infant Gut Microbiota. Frontiers in microbiology, 12, 664257-664257. https://doi.org/10.3389/fmicb.2021.664257 5. Lebel, C., MacKinnon, A., Bagshawe, M., Tomfohr-Madsen, L., & Giesbrecht, G. (2020). Elevated depression and anxiety symptoms among pregnant individuals during the COVID-19 pandemic. Journal of affective disorders, 277, 5-13. https://doi.org/10.1016/i.jad.2020.07.126 (1987). Detection of Postnatal Depression: Development of the 10-item Edinburgh Postnatal Depression Scale. British Journal of Psychiatry, 150(6), 782-786. https://doi.org/10.1192/bjp.150.6.782 7. Putnam, S. P., Helbig, A. L., Gartstein, M. A., Rothbart, M. K., & Leerkes, E. (2014, 2014/07/04). Development and Assessment of Short and Very Short Forms of the Infant Behavior Questionnaire–Revised. Journal of Personality Assessment, 96(4), 445-458. https://doi.org/10.1080/00223891.2013.841171

THE W. GARFIELD WESTON - FOUNDATION **Weston Family Microbiome Initiative**

• Maternal depression was not significantly associated with the relative abundance of bacteria.

 Negative affectivity with Adlercreutzia Parabacteroides merdae and Ruminococcus callidus (*r* = .247, *p* = 0.000421; *r* = -.221, *p* = .002; r = .221, p = .002; r = -.209, p = .003)

mucilaginosa (r = .254, p = 0.000267).

bacterial species

and metabolic pathways expressed by the human gut

gest that the maternal microbiome is associated with the infant's negative affectivity, orienting and ens the possibility of using gut-microbiome targeted interventions during pregnancy to promote infant elopment.

by the IBQ-R (very short form) and the relative abundance of

Functional Associations

The following metabolic pathways were associated with surgency-

• Thiamin formation from pyrithiamine and oxythiamine (yeast) (p = 0.004, r = 0.201)• Coenzyme A biosynthesis I (p = 0.007, *r* = -0.189) Pantothenate and coenzyme A biosynthesis III (p = 0.007, r = -0.189) Glycolysis IV (plant cytosol (p = 0.011, r = -0.18)